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Abstract

Aluminum-lithium alloys have been introduced to the Aerospace community as

a way to decrease weight and improve stiffness over conventional aluminum
alloys for structural components. A manufacturing method which has created a
great deal of interest for Al-Li aerospace applications is the fabrication of net
shape parts by superplastic forming (SPF). Aluminum-Lithium alloys present
some unique handling problems and fabrication challenges for established
practices in superplastic forming. This paper will discuss the manufacturing
challenges and approaches of forming 8091 Al-Li by SPF and provide a brief
overview into the material characteristics which make 8091 a successful

candidate for SPF aircraft parts.
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Superplastic forming has provided a means to reduce part count and labor
intensity for manufacturing aircraft parts. Titanium and aluminum alloys have
been successfully used as SPF structures on several different types of
aircraft. The emergence of composite materials for use on aircraft structural
and non-structural elements has initiated a drive in the metals industry to
produce alloys of high strength and toughness, light weight and which have
excellent thermal properties. The Al-Li alloys were developed as low density
high stiffness materials which weuld be competitive with composite materials
and allow conventional metal manufacturing methods to be applied.

Several of the Al-Li alloys were developed for both conventional and
superplastic forming applications.  Pockwell is currently examining the
characteristics and formability of 8051 Al-Li which is processed for
superplastic capabilities.

Material Selection and Characterization :

The three alloys examined for the SPF program were 8090, 8091, and 2090
Al-Li ( Refer to Table 1). Samples of the alloys were obtained from Alcan,
Alcoa and Reynolds prior to the onset of the program. The materials were
examined for SPF elongation, post SPF strength and for production
availability of the alloy. The results from the analyses yielded 8091 as the
most promising Al-Li alloy for both forming and for post SPF strength after
heat-treatment (Table 2).

Table 1 : ingot metalluroy alioys examined for SPF.

Li Cu Mg Zr Al

8090 245 13 .75 .12  Rem.
8091 260 1.9 .55 .12  Rem.
2090 230 25 - 12 Rem.

8091 Al-Li was obtained in three thicknesses (0.065", 0.090" and 0.125")
from Alcan in the "superplastic™ condition. SPF characterization studies were
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initiated at the Rockwell science center on all three gauges of material. The
initial group of tests were performed to optimize the forming temperature and
achieve the maximum SPF elongation in the part. The optimum forming
temperature, used for the remainder of the characterization tests, was found
to lie between 950 and 990 OF for all three gauges (Figure 1).

The initial SPF characterization tensile tests used Stepped strain rates to
determine preliminary flow stress levels and elongation data.1 The stepped
Hests were followed by single strain-rate tensile tests. These tests resulted in
lower overall SPF elongations than multiple strain-rate tests. Optimization of
the SPF elongation resulted in the use of an initial strain rate followed by a
slower strain rate for all forming and test operations. The two step approach to
forming allows the material to convert from static grain growth to dynamic
recrystallization and grain growth. This combination allows greater uniaxial
SPF elongations to be achieved during the forming process without causing
necking or areas of localized thinning in the part. The strain rate used during
the initial phase of the forming test (10-3) resulted in high levels of flow stress in
the material. The second phase strain rate - typically a decade less than the

initial strain rate - had reduced fiow stress levels which remained nearly
constant throughout the remainder of the test (Figure 2).
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Figure 1: Elevated Temperature Tensile Tests were conducted to
determine the maximum SPF elongation in the part.
The optimum SPF temperature was used throughout
the remainder of the tests.
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Figure 2: Flow stress as a function of Engineering strain for SPF 8091
Al-Li using optimum strain rates.

As with 7475 aluminum, aluminum-lithium alloys require back pressure to
supress cavitation or intergranular voids during the forming cycle.2.3.4
Tensile tests were perfomed with different levels of back pressure using
optimized temperature and strain rate profiles. Back pressure values above
200 psi delayed the onset of cavitation from 25% to 200% engineering
strain, which allowed SPF elongations to be increased from 400% ( in air,
no back pressure) to 1300% (Figure 3). The final phase in the
characterization study was the optimization of post SPF properties. The
optimal mechanical properties for 8091 Al-Li required 2 post SPF heat-
treatment which would produce sufficient strength without causing
embrittiement in the material.



The heat-treatment optimization work has been conducted at Washington
State University (WSU)S. The heat treatment optimization has examined
the solution heat-treatment parameters, quench sensitivity and artificial
aging parameters for SPF 8091 Al-Li. The initia! heat-treatment tests were
conducted during the same time period as the initial SPF characterization
studies with as-received (AR) materiai. Once the optimum SPF tensile
parameters were obtained, small test pans were formed and provided to
WSU for optimum heat treatment verification.
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Figure 3 : Superplastic elongation is effected by the amount of back
pressure used during the forming and test operations.

Forming with 8091 Al-Li :

Forming studies were initated using the optimum tensile parameters. The
forming temperatures for 8091 Al-Li are not significantly different than those
for 7475 aluminum, making the choice of tooling materials consistant with
past work on 7475 AL.6 There is a potential for tooling corrosion with the Al-
Li al'oys at elevated temperatures; this problem could be eleviated by using
a corrosion-resistant steel or by applying a non-reactive, glassy coating to
the tool. Such a glassy coating on the tool would assist the releasing agent
in lubrication during the forming operation, would ease part removal from the
tool and might allow easier tool cleaning. The releasing agent which has
proved successful for 7475 aluminum (boron-nitride) anpears ¢z bo excallent




for 8091 Al-Li. There does not appear to be any probiems with excessive
build-up of boron-nitride of the tool surface although the amount of
producibility parts formed with the same tool has been limited to ten.
Production use of the releasing agent may require further investigation.

The types ot tooling which appear to be the most {iexible for the
manufacturing environment are a die box with inserts. The die box can be
platen heated or integrally heated but must be well insulated to prevent
large temperature gradients over the surface of the tool. 8091 Al-Li is very
sensitive to thermal gradients in tooling which can be seen in Figure 4. The
flow stress, as shown in Figure 2, increases with a decrease in forming
temperature. An increase in flow stress can cause cavitation along with
premature tailure in the part. The thinning profiles for two pans with different
temperature gradients show changes in the way the part conformed to the
surface of the tool. Figure 5 shows the thinning profile of a pan formed with
several thermal gradients over the surface of the tool. Figure 6 represents a
part with more uniform thickness distribution and thermal profile. Cavitation
analysis for a part formed with several thermal gradients versus a part with
excellent temperature control can be seen in Figure 7. Temperature control
of £ 5 °F is an optimum forming condition but * 10 °F does not appear to
cause extreme difficulty with the material thinning profile (Figure 4, 5 and 8).

The part blank should be hot loaded to eliminate undesireable effects
associated with long exposure times at elevated temperatures. Loading the
part blank into a die at room temperature (cold loading) and subsequently
heating the die-part blank system to the opiimum forming temperature wili
cause excessive grain growth and oxidation in the material. Grain growth if
aliowed to continue for long periods of time will eliminate all superplastic
characteristics in the material. The oxidation of Al-Li alloys will allow lithium-
oxide or -hydroxide to be formed which can degrade the final mechanical
properties of the part.

The optimum strain rates, forming temperature and back pressure obtained
from tensile analysis were used to fabricate the producibility parts for the
program. The first four parts used strain levels up to 1.0 for the initial phase
after which the strain rate was reduced for the remainder of the forming
cycie. Pressure-time cycles were developed on an in-house computer
system which models both the tool configuration and the strain hardening
behavior of the material during the cycle. The initial parts failed as a result of
the rapid forming rate and of improper temperature control during the
process. The amount of first stage strain was decreased for the second batch
of producibility tests. The process parameters (forming temperature, back
pressure control and pressure-time cycle control) were also monitored
closely to achieve better formability than pans 1 through 4. The pans
fabricated under the new conditions (pans 5 through 10, batch 2) appeared
to have improved uniformity in the thinning profiles but orange peel texturing
was observed on several of the pans along with areas of excessive thinning

9
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Figure 5: Thinning profile for a producibility pan formed with different
temperature gradients along the tool surface. Original
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Figure 6: Thinning profile for a producibility pan formed with a uniform
thermal profile. Original thickness of sheet prior to SPF was
0.090".
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along the side walls. A modification to ine strain rate transition was made
which allowed the parts (third batch of producibility parts, pans 12 through
14) to be fabricatad without any apparent flaws (Figure 8). The pans in all
three groups of tests did not show any evidence of highly directional
: behavior. Thus, anisotropy did not appear to be a major issue for SPF 8091
Al-Li. All of the producibiltiy pans were hot unicaded. The 8091 Al-Li
appears to be significantly softer than previous SPF 7475 aluminum during
removal from the tool and will have to be handled in such a manner which
- will prevent distortion of the formed part.

\ guam)

Cavitation analysis was perfomed on both the second and on the third batch
of produciblity parts. The results from the analysis can be seen in Figure 9.
The measurements for the parts formed in the third batch did not show any
evidence of cavitaion up to 500% thickness strains.

——

Heat Treatment Optimization :

Aluminum-Lithium materials require solution heat-treatment at high
temperatures to assure dissolution of the precipitates into the matrix. The
solution heat-treatment times should be kept at a minimum to prevent the
loss in desireable propenties from oxidation. An artificial age of the solution
heat-treated parts appears to produce desired -T62 strength levels in the
material (Table 2). The strength of as-received and SPF material after heat-
treatment can be seen in Figure 10.

ircr. Applications _for SPF 1:

Applications that have been examined in the past for SPF conversion are
built up structure with high part count and high labor intensities. SPF
conversion studies for 8091 Al-Li use these criteria for choosing a favorable
part design along with high stiffness and low weight requirements. Both
primary and secondary structures with beaded or sinusoidal stiffeners
(replacing extrusions either bonded or mechanically fastened) appear to
reduce the labor intensity of a part (labor intensity is defined as the amount
of different as waell as repetitive steps required to fabricate a pant) and overall
part cost. Parts that are conventionally complex in design and require multi-
stage forming operations also have reduced cost and labor intensity values.
The reductions in cost and labor intensity along with several other factors
are used to determine the cost effectiveness or "tradability” of a conventional

14
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18" x 18" x 6" producibiltiy pan

18" x 9" x 6" producibility pan

Figure 8: 8091 Al-Li SPF producibility parts formed with a modified
- strain rate transition cycle.
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design to a SPF structure. SPF Al-Li alloys provide a familiar alternative to
many types of built-up structural components and have the advantage of
being a simple forming process, similar to SPF 7475 aluminum fabrication
methods with the advantage of having shorter forming cycles. .
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